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1. Introduction

In the last two decades, symplectic schemes for finite-dimensional Hamiltonian systems are proven to
be more accurate and efficient than non-symplectic schemes for long-time numerical computations and
are nowadays applied to a number of practical problems arising in many fields of science and engineering
which involve celestial mechanics, quantum physics, statistics and so on (see [6,10,12,15,20–22,24,32,
33,36,38,42] and references therein).

If nowadays symplecticity for finite-dimensional Hamiltonians is reasonably well understood, it is
only in the last few years that researchers have started investigating the case of Hamiltonian PDEs. For
infinite-dimensional systems one has the choice between symplecticity and multi-symplecticity, the first
being a global property, the second local. However, under appropriate circumstances, it is possible to
show that the local preservation of multi-symplecticity can be used to preserve global properties of the
PDE under consideration.

For the theoretical background on multi-symplecticity for Hamiltonian PDEs with constant coeffi-
cients we refer the reader to [4,5,8,18,21,29–31,37] and references therein.

Multi-symplecticity preserving numerical methods for Hamiltonian PDEs have displayed much better
numerical behavior for long-time computations too. For instance, in [5] the authors show that their multi-
symplectic integrator, based on the central box discretization, has remarkable energy and momentum
conservation; moreover when the function S(z) (in Eq. (15)) in the multi-symplectic formula of Hamil-
tonian PDEs is quadratic in z, the multi-symplectic box scheme conserves discrete local energy and local
momentum exactly.

In the numerical experiments in [21] both the local and global conservation of energy and momen-
tum are monitored and it is found that the global momentum and norm are preserved within roundoff
[21, p. 125]. And it is substantiated numerically that the global conservation properties are weaker con-
ditions (also see [37]). It is well known that Hamiltonian PDEs with variable coefficients also have
some concrete global conservation laws. Typical examples are normalization for the time-dependent lin-
ear Schrödinger equation in quantum physics (see [11,13,25,26,34,35,44]) and energy/momentum for
the nonlinear Schrödinger equation with variable coefficients arising in optics and other applications.
Thus we are motivated to investigate the globally conservative properties of multi-symplectic structure-
preserving discretizations of Hamiltonian PDEs with variable coefficients. We refer to [23,27,28,39,41,
45] and references therein for further reading about discrete global conservation laws for a family of
finite-difference schemes. In this paper we focus mainly on globally conservative properties, and their ap-
plication to error estimate, of the multi-symplectic scheme for nonlinear variable-coefficient Schrödinger
equations. Multi-symplectic methods for a variety of other Hamiltonian PDEs with variable coefficients
arising from applications are presented in [16,17].

We consider the one-dimensional Cauchy problem

iψt + α(t)ψxx + Ψ ′
|ψ |2

(|ψ |2, x, t
)
ψ = 0,

ψ(x,0) = ϕ(x), (1)

where α(t) (α(t) �≡ 0) is a bounded real function of t ∈ R (α(t) ≡ 0 is an interesting case, it will be
discussed in another paper), and Φ(ψ,x, t) = Ψ (|ψ |2, x, t) is a real differentiable function of (ψ,x, t) ∈
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C × R × R, such that Ψ ′′
|ψ |2(|ψ |2, x, t) is a bounded function of x and t for every ψ ∈ C. As usual,

i = √−1, and, moreover, ϕ(x) is a smooth function such that

E1(ϕ) =
∫
R

∣∣ϕ(x)
∣∣2

dx < +∞, (2)

(the so-called L2-function).
The theoretical investigation of problem (1) can be found in [3,44] and references therein. Throughout

the paper we assume that the solution ψ of (1) exists globally and satisfies lim|x|→+∞(|ψ | + |ψx |) = 0.
Before proceeding further, we derive three global conservation laws (norm, momentum and energy)

for (1). The first is done by multiplying (1) by ψ̄ and taking the imaginary part, and multiplying (1) by
ψ̄t and then taking the real part. The next two can be obtained by a similar way.

Proposition 1. Under our assumptions, the solution ψ of the problem (1) satisfies

(1) E1(ψ) = ∫
R

|ψ |2 dx = E1(ϕ) (global norm conservation);
(2) M(ψ) = ∫

R
(	(ψ)
(ψx) − 	(ψx)
(ψ)) dx = M(ϕ) (global momentum conservation);

(3) if Ψ is independent of t and α(t) ≡ constant, then

E2(ψ) =
∫
R

(
α|ψx |2 − Ψ

(|ψ |2, x))
dx = E2(ϕ), (3)

where ϕ is the initial function in (1) and satisfies

E2(ϕ) =
∫
R

(
α|ϕx |2 − Ψ

(|ϕ|2, x))
dx < +∞.

(3) stands for global energy conservation.

Obviously, if Ψ is dependent on t , then (1), in general, does not have the property of global energy
conservation. Because the study of global momentum conservation is quite similar to that of global norm
conservation, we will omit some details of discrete global momentum conservation of multi-symplectic
integrators.

In order to investigate the numerical behavior of the solution of (1) under numerical discretization,
we introduce a uniform grid (xj , tk) ∈ R

2 with mesh-size �t in the t direction and mesh-size �x in the
x-direction. The value of the function ψ(x, t) at the mesh point (xj , tk) is denoted by ψj,k . Furthermore,
we will denote

ψj− 1
2 ,k := 1

2
(ψj,k + ψj−1,k), ψj,k− 1

2
:= 1

2
(ψj,k + ψj,k−1),

and

‖ψk‖2 := �x
∑

j

|ψj,k|2, ‖ψk‖2
1
2
:= �x

∑
j

|ψj− 1
2 ,k|2

(we assume that the two last sums are finite).
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A numerical scheme for problem (1) can be constructed as follows

i

�t
(ψj,k+1 − ψj,k) +

α(tk+ 1
2
)

2�x2

(
(ψj+1,k+1 − 2ψj,k+1 + ψj−1,k+1) + (ψj+1,k − 2ψj,k + ψj−1,k)

)
+

Ψ (|ψj,k+1|2, xj , tk+ 1
2
) − Ψ (|ψj,k|2, xj , tk+ 1

2
)

2(|ψj,k+1|2 − |ψj,k|2) (ψj,k+1 + ψj,k) = 0 (4)

(modified Crank–Nicolson scheme), which is not a new numerical scheme and has been presented in [9]
for the case of constant coefficients.

In Section 3 we will prove that this scheme possesses some conservative properties which imply con-
vergence and stability. The discretization of gradient in nonlinear term results in nonmulti-symplecticity
of the scheme.

The present paper is organized as follows: in the rest of this section we recall some globally classical
conservation laws and well-known numerical schemes for the time-dependent Schrödinger equations in
quantum physics and nonlinear Schrödinger equations with variable coefficients.

A multi-symplectic scheme for the Schrödinger equations with variable coefficients is introduced in
Section 2. In Section 3 we discuss the globally conservative properties of the multi-symplectic scheme.
The scheme satisfies a discrete analogue of the classically global conservation laws mentioned in previous
sections. The global energy transit formulae in temporal direction are presented. The error of the proposed
multi-symplectic scheme then is estimated in Section 4 by means of numerically global conservation
laws. Section 5 is divided into two parts. In the first part we present some numerical experiments to
compare the numerical behavior of the multi-symplectic scheme proposed in Section 2 with other two
schemes. In the last part of Section 5 we monitor the global energy transit under the multi-symplectic
scheme.

1.1. The time-dependent Schrödinger equation in quantum physics

Substituting α(t) = h̄
2m

and Ψ ′
|ψ |2(|ψ |2, x, t) = − 1

h̄
V (x, t) in (1) yields

ih̄ψt + h̄2

2m
ψxx + V (x, t)ψ = 0,

ψ(x,0) = ϕ(x), (5)

where V (x, t) is a bounded real function, the potential, m is the mass of the particle, ψ is the wave-
function and finally h = 2πh̄ is Planck’s constant. The linear problem (5) is a fundamental equation in
quantum physics [11–13,19,25,26,34,39]. It describes the propagation of a quantum particle, for instance
an electron, in a potential field given by V (e.g., the usual Coulomb potential for the hydrogen atom). The
square of the wave-function, ψ2, describes the probability distribution for the position of the particle. In
this case, the first item and third item in Proposition 1 can be rewritten as

Proposition 2.

(1) E1(ψ) =
∫ ∣∣ψ(x, t)

∣∣2
dx = E1(ϕ). (6)
R
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(2) If V is independent of t , then

E2(ψ) =
∫
R

(
h̄

2m

∣∣ψx(x, t)
∣∣2 − V (x)

h̄

∣∣ψ(x, t)
∣∣2

)
dx = E2(ϕ), (7)

where E2(ϕ) = ∫
R
( h̄

2m
|ϕ′|2 − V (x)

h̄
|ϕ|2) dx.

When V is independent of t , a famous scheme for (5) in quantum physics is

ih̄

�t
(ψj,k+1 − ψj,k) + h̄2

2m�x2
(ψj+1,k+ 1

2
− 2ψj,k+ 1

2
+ ψj−1,k+ 1

2
) + V (xj )ψj,k+ 1

2
= 0 (8)

known as Goldberg’s scheme [13]. The Goldberg scheme is a special case of the modified Crank–
Nicolson scheme

ih̄

�t
(ψj,k+1 − ψj,k) + h̄2

2m�x2
(ψj+1,k+ 1

2
− 2ψj,k+ 1

2
+ ψj−1,k+ 1

2
) + V (xj , tk+ 1

2
)ψj,k+ 1

2
= 0 (9)

because of the independence of V on t .
Researchers use (8) and (9) to simulate numerically quantum states of (5). Recently, some further

investigation on higher-order numerical schemes for (5) has been done in [2,19,34,35] and references
therein.

1.2. Nonlinear Schrödinger equations with variable coefficients

The following nonlinear problem

iψt + α(t)ψxx + β(x, t)|ψ |p−1ψ = 0,

ψ(x,0) = ϕ(x), (10)

where α(t) and β(x, t) are bounded real functions, p � 3, was introduced and investigated in [17,43] and
references therein. This is a special case of problem (1) since one could choose

Ψ
(|ψ |2, x, t

) = 2β(x, t)

p + 1
|ψ |p+1.

In the case when α(t) and β(x, t) are constant functions, there has been lots of research and results
from both the theoretical and numerical point of view (see, for instance, [1,7–9,14,15,17,21,24,36,37,
39–42,45]). Some useful and well-known numerical schemes and their conservative properties have been
proposed and analyzed in [9,22,41,45]. For instance, the scheme

i

�t
(ψj,k+1 − ψj,k) + α

2�x2

(
(ψj+1,k+1 − 2ψj,k+1 + ψj−1,k+1) + (ψj+1,k − 2ψj,k + ψj−1,k)

)
+ β

p + 1

|ψj,k+1|p+1 − |ψj,k|p+1

|ψj,k+1|2 − |ψj,k|2 (ψj,k+1 + ψj,k) = 0, (11)

was considered in [9].



J. Hong et al. / Applied Numerical Mathematics 56 (2006) 814–843 819
A natural extension of the above scheme (11) to (10), is

i

�t
(ψj,k+1 − ψj,k) +

α(tk+ 1
2
)

2�x2

(
(ψj+1,k+1 − 2ψj,k+1 + ψj−1,k+1) + (ψj+1,k − 2ψj,k + ψj−1,k)

)
+

β(xj , tk+ 1
2
)

p + 1

( |ψj,k+1|p+1 − |ψj,k|p+1

|ψj,k+1|2 − |ψj,k|2
)

(ψj,k+1 + ψj,k) = 0, (12)

that can regarded as a special case of the modified Crank–Nicolson scheme (4) (in short, denoted by
MCN).

A generalization of the Goldberg scheme to the nonlinear equation (10) is

i

�t
(ψj,k+1 − ψj,k) +

α(tk+ 1
2
)

2�x2

(
(ψj+1,k+1 − 2ψj,k+1 + ψj−1,k+1) + (ψj+1,k − 2ψj,k + ψj−1,k)

)
+ β(xj , tk+ 1

2
)|ψj,k+ 1

2
|p−1ψj,k+ 1

2
= 0,

which is denoted by MG.
The result below follows as a corollary of Proposition 1 applied to (10).

Proposition 3.

(1) E1(ψ) = ∫
R

|ψ |2 dx = E1(ϕ);
(2) If α = constant and β(x, t) is independent of t , then

E2(ψ) =
∫
R

(
α|ψx |2 − 2β(x)

p + 1
|ψ |p+1

)
dx = E2(ϕ), (13)

where E2(ϕ) = ∫
R
(α|ϕx |2 − 2β(x)

p+1 |ϕ|p+1) dx.

2. A multi-symplectic scheme

Now we turn our attention to an intrinsic conservative property—multi-symplecticity—of the equation
in problem (1) and the difference scheme which preserves the property. The importance of multi-
symplectic integrators proposed in [4,5,7,8,18,29–31,37] is the exact preservation of multi-symplectic
structure in numerical computation for infinite-dimensional Hamiltonian systems involving Schrödinger
equations with constant coefficients. The multi-symplecticity in [4,5] (also, in [7,8,18] and, equivalently,
[29–31,37]) is one of the most useful tool for construction of multi-symplectic integrators in the case of
constant coefficients. In this section we firstly extend Bridge–Reich definition of multi-symplectic inte-
grator in [4,5,7,8,18] to the case of variable coefficients, then derive a multi-symplectic integrator for the
equation in problem (1).

Consider the Schrödinger equation in problem (1) and let ψ(x, t) = u(x, t)+ iv(x, t). Then, the equa-
tion in (1) is equivalent to


− ∂v

∂t
+ α(t) ∂2u

∂x2 + Ψ ′
|ψ |2(|ψ |2, x, t)u = 0,

∂u
∂t

+ α(t) ∂2v

∂x2 + Ψ ′
|ψ |2(|ψ |2, x, t)v = 0,

(14)

as it can be easily verified by setting both real and imaginary part equal to zero.
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Set z = (u, v,ux, vx)
T. Eq. (14) can be rewritten as

M
∂z

∂t
+ K(t)

∂z

∂x
= ∇zS(z, x, t), (15)

where

M =



0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


 , K(t) = α(t)




0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0


 ,

and

S(z, x, t) = −1

2
Ψ

(
u2 + v2, x, t

) − α(t)

2

(
u2

x + v2
x

)
.

It is easy to check that

∂ω

∂t
+ ∂κ

∂x
= 0 (16)

for the differential forms ω(U,V ) = 〈MU,V 〉 and κ(U,V ) = 〈K(t)U,V 〉, where U(x, t) and V (x, t)

are the solutions of the variational equation of (15)

M
∂(dz)

∂t
+ K(t)

∂(dz)

∂x
= DzzS(z, x, t)(dz), (17)

〈· , ·〉 is the inner product, and DzzS is the second order derivative of S with respect to z (a symmetric
matrix function). Eq. (16) is an intrinsic conservation law for (15) and for (1).

Next, we turn our attention to the numerical discretization of (15), which preserves (16) in the discrete
sense. Eqs. (15)–(17) can be discretized as

M∂
j,k
t zj,k + Kk∂j,k

x zj,k = (∇zSj,k)j,k, (18)

∂
j,k
t ωj,k + ∂j,k

x κj,k = 0, (19)

M∂
j,k
t (dz)j,k + Kk∂j,k

x (dz)j,k = (
Dj,k

zz Sj,k

)
(dz)j,k, (20)

where Sj,k = S(zj,k, xj , tk), Kk = K(tk), and

ωj,k = 〈MUj,k,Vj,k〉, κj,k = 〈
KkUj,k,Vj,k

〉
,

with Uj,k and Vj,k being solutions of (20), and ∂
j,k
t , ∂

j,k
x being discretizations of the derivatives ∂t and ∂x ,

respectively.

Definition 1. The numerical scheme (18) is said to be multi-symplectic if (19) is a discrete conservation
law of (18).

As we have mentioned before, multi-symplecticity for autonomous and constant coefficient equa-
tions has been investigated at large in the last few years (see [4,5,7,8,16–18,21,29–31,37] and references
therein)—in particular, the central box scheme is multi-symplectic for autonomous problems. In [7,8,18],
some applications of the central box scheme to autonomous systems are presented.

In what follows, we apply the central box scheme to the variable-coefficient case (15). The formulas
corresponding to (18)–(20) are
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Mδtzj+ 1
2 ,k + Kk+ 1

2 δxzj,k+ 1
2
= ∇zS(zj+ 1

2 ,k+ 1
2
, xj+ 1

2
, tk+ 1

2
), (21)

δtωj+ 1
2 ,k + δxκj,k+ 1

2
= 0, (22)

Mδt dzj+ 1
2 ,k + Kk+ 1

2 δx dzj,k+ 1
2
= Aj+ 1

2 ,k+ 1
2
dzj+ 1

2 ,k+ 1
2
, (23)

where

Aj+ 1
2 ,k+ 1

2
= DzzSj+ 1

2 ,k+ 1
2
,

δtzj,k = 1

�t
(zj,k+1 − zj,k),

δxzj,k = 1

�x
(zj+1,k − zj,k),

ωj,k = 〈MUj,k,Vj,k〉,
κj,k = 〈

KkUj,k,Vj,k

〉
and Uj,k and Vj,k are the solutions of (23). From

〈Aj+ 1
2 ,k+ 1

2
Uj+ 1

2 ,k+ 1
2
,Vj+ 1

2 ,k+ 1
2
〉 − 〈Aj+ 1

2 ,k+ 1
2
Vj+ 1

2 ,k+ 1
2
,Uj+ 1

2 ,k+ 1
2
〉 = 0 (24)

and the skew-symmetry of M and K(t), the result below follows.

Theorem 1. The central box scheme (21) is multi-symplectic: Eq. (22) is satisfied in each box.

Note that (21) is a generalization of result in [5] to the varying coefficient case. The use of (21) is
not straightforward and convenient in the presence of initial and boundary conditions. An alternative is
to produce a numerical scheme which only depends on ψ , and this is done by eliminating the ux, vx

variables in (21) by standard algebraic procedures.
To this goal, note that (21) can be written as

− 1

�t
(vj+ 1

2 ,k+1 − vj+ 1
2 ,k) +

α(tk+ 1
2
)

�x

(
(ux)j+1,k+ 1

2
− (ux)j,k+ 1

2

)
= −Ψ ′

|ψ |2
(|ψj+ 1

2 ,k+ 1
2
|2, xj+ 1

2
, tk+ 1

2

)
uj+ 1

2 ,k+ 1
2
, (25)

1

�t
(uj+ 1

2 ,k+1 − uj+ 1
2 ,k) +

α(tk+ 1
2
)

�x

(
(vx)j+1,k+ 1

2
− (vx)j,k+ 1

2

)
= −Ψ ′

|ψ |2
(|ψj+ 1

2 ,k+ 1
2
|2, xj+ 1

2
, tk+ 1

2

)
vj+ 1

2 ,k+ 1
2
, (26)

1

�x
(uj+1,k+ 1

2
− uj,k+ 1

2
) = (ux)j+ 1

2 ,k+ 1
2
, (27)

1

�x
(vj+1,k+ 1

2
− vj,k+ 1

2
) = (vx)j+ 1

2 ,k+ 1
2
. (28)

It seems that the numerical experiment in [21] has been done by using (25)–(28). In order to make
numerical implementation a little bit cheaper, now we derive a multi-symplectic scheme corresponding
to the original equation in problem (1).

From (27) and (28) it follows that
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1

�x
(uj+1,k+ 1

2
− 2uj,k+ 1

2
+ uj−1,k+ 1

2
) = 1

2

(
(ux)j+1,k+ 1

2
− (ux)j−1,k+ 1

2

)
, (29)

1

�x
(vj+1,k+ 1

2
− 2vj,k+ 1

2
+ vj−1,k+ 1

2
) = 1

2

(
(vx)j+1,k+ 1

2
− (vx)j−1,k+ 1

2

)
. (30)

Thus, we obtain

− 1

�t

(
(vj+ 1

2 ,k+1 − vj+ 1
2 ,k) + (vj− 1

2 ,k+1 − vj− 1
2 ,k)

) +
2α(tk+ 1

2
)

�x2
(uj+1,k+ 1

2
− 2uj,k+ 1

2
+ uj−1,k+ 1

2
)

= −Ψ ′
|ψ |2

(|ψj+ 1
2 ,k+ 1

2
|2, xj+ 1

2
, tk+ 1

2

)
uj+ 1

2 ,k+ 1
2
− Ψ ′

|ψ |2
(|ψj− 1

2 ,k+ 1
2
|2, xj− 1

2
, tk+ 1

2

)
uj− 1

2 ,k+ 1
2
, (31)

1

�t

(
(uj+ 1

2 ,k+1 − uj+ 1
2 ,k) + (uj− 1

2 ,k+1 − uj− 1
2 ,k)

) +
2α(tk+ 1

2
)

�x2
(vj+1,k+ 1

2
− 2vj,k+ 1

2
+ vj−1,k+ 1

2
)

= −Ψ ′
|ψ |2

(|ψj+ 1
2 ,k+ 1

2
|2, xj+ 1

2
, tk+ 1

2

)
vj+ 1

2 ,k+ 1
2
− Ψ ′

|ψ |2
(|ψj− 1

2 ,k+ 1
2
|2, xj− 1

2
, tk+ 1

2

)
vj− 1

2 ,k+ 1
2
. (32)

Combining the above two equations, we derive the following multi-symplectic scheme

i(δtψj−1,k + 2δtψj,k + δtψj+1,k) + 2α(tk+ 1
2
)
(
δ2
xψj,k + δ2

xψj,k+1
)

+ 2Ψ ′
|ψ |2

(|ψj+ 1
2 ,k+ 1

2
|2, xj+ 1

2
, tk+ 1

2

)
ψj+ 1

2 ,k+ 1
2
+ 2Ψ ′

|ψ |2
(|ψj− 1

2 ,k+ 1
2
|2, xj− 1

2
, tk+ 1

2

)
ψj− 1

2 ,k+ 1
2
= 0,

(33)

with difference operators

δtψj,k = 1

�t
(ψj,k+1 − ψj,k), (34)

δ2
xψj,k = 1

�x2
(ψj+1,k − 2ψj,k + ψj−1,k). (35)

Obviously, the numerical computation implemented by (33) should be cheaper than by (25)–(28). In [5]
it is shown that the scheme (33) preserves energy locally for constant coefficients if S in (15) is quadratic
in z.

If Ψ (|ψ |2, x, t) = V (x, t)|ψ |2, then the scheme (33) becomes

i(δtψj−1,k + 2δtψj,k + δtψj+1,k) + 2α(tk+ 1
2
)
(
δ2
xψj,k + δ2

xψj,k+1
)

+ 2V (xj+ 1
2
, tk+ 1

2
)ψj+ 1

2 ,k+ 1
2
+ 2V (xj− 1

2
, tk+ 1

2
)ψj− 1

2 ,k+ 1
2
= 0. (36)

If Ψ (|ψ |2, x, t) = 2β(x,t)

p+1 |ψ |p+1, p � 3, then the scheme (33) reads

i(δtψj−1,k + 2δtψj,k + δtψj+1,k) + 2α(tk+ 1
2
)
(
δ2
xψj,k + δ2

xψj,k+1
)

+ 2β(xj+ 1
2
, tk+ 1

2
)|ψj+ 1

2 ,k+ 1
2
|p−1ψj+ 1

2 ,k+ 1
2
+ 2β(xj− 1

2
, tk+ 1

2
)|ψj− 1

2 ,k+ 1
2
|p−1ψj− 1

2 ,k+ 1
2
= 0. (37)

An equivalent multi-symplectic conservation law to (16) is

∂t (du ∧ dv) + α(t)(dux ∧ du + dvx ∧ dv) = 0,

which can be used (see [21,37]) to show that a higher order multi-symplectic integrator can be produced
by application of a pair of Gauss–Legendre collocation methods in time and in space, respectively. In
particular, we can apply it to verify that the scheme (4) is not multi-symplectic for some Ψ. Also, it can
be shown easily that Goldberg’s scheme (9) (and MG scheme) is multi-symplectic.
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We will show that (33), (36) and (37) are unitary, which also implies stability with respect to the
initial value (see [20,45]). The schemes also possess other global conservation properties that will be
investigated in the next section.

3. Conservative properties of the multi-symplectic scheme

The scope of this section is to show that the numerical schemes introduced above possess discrete
conservation laws analogous to the continuous ones. Some results (Theorems 2 and 3) in this section,
in fact, can be regarded as consequences of discrete Noether theorem [5,29]. As well known, in the case
of Hamiltonian ODEs symplectic integrators may not preserve quadratic invariants (see [38]). In this
section we also give a global energy transit formula of the multi-symplectic scheme. In what follows we
assume that all sums under considerations are finite.

Theorem 2. The scheme (33) (thus (36) and (37)) possesses the discrete global conservation law

‖ψk‖2
1
2
= �x

∑
j

|ψj− 1
2 ,k|2 = �x

∑
j

|ϕj− 1
2
|2 = ‖ϕ‖2

1
2
, (38)

that is, the scheme is unitary, thus stable with respect to the initial value.

Proof. We multiply (33) by ψ̄j,k+1 + ψ̄j,k , where ψ̄ is the complex conjugate of ψ . Then, the first term
becomes

i

�t

(
ψj−1,k+1ψ̄j,k+1 − ψj−1,kψ̄j,k+1 + ψj−1,k+1ψ̄j,k − ψj−1,kψ̄j,k

+ 2|ψj,k+1|2 − 2|ψj,k|2 + 4i
(ψj,k+1ψ̄j,k)

+ ψj+1,k+1ψ̄j,k+1 + ψj+1,k+1ψ̄j,k − ψj+1,kψ̄j,k+1 − ψj+1,kψ̄j,k

)
(39)

(as usual, 	, 
 stand for ‘real’ and ‘imaginary’ part, respectively). The second term in (33) reads

2α(tk+ 1
2
)

(δx)2

(
ψj+1,k+1ψ̄j,k+1 − 2|ψj,k+1|2 + ψj−1,k+1ψ̄j,k+1

+ ψj+1,k+1ψ̄j,k − 2ψj,k+1ψ̄j,k + ψj−1,k+1ψ̄j,k + ψj+1,kψ̄j,k+1 − 2ψj,kψ̄j,k+1 + ψj−1,kψ̄j,k+1

+ ψj+1,kψ̄j,k − 2|ψj,k|2 + ψj−1,kψ̄j,k

)
. (40)

The third and fourth in (33) yield

2(Θj− 1
2 ,k+ 1

2
ψj− 1

2 ,k+ 1
2
+ Θj+ 1

2 ,k+ 1
2
ψj+ 1

2 ,k+ 1
2
)ψ̄j,k+ 1

2

= Θj− 1
2 ,k+ 1

2
|ψj,k+ 1

2
|2 + Θj− 1

2 ,k+ 1
2
ψj−1,k+ 1

2
ψ̄j,k+ 1

2

+ Θj+ 1
2 ,k+ 1

2
|ψj,k+ 1

2
|2 + Θj+ 1

2 ,k+ 1
2
ψj+1,k+ 1

2
ψ̄j,k+ 1

2

= (Θj− 1
2 ,k+ 1

2
+ Θj+ 1

2 ,k+ 1
2
)|ψj,k+ 1

2
|2

+ ψj−1,k+ 1
2
(Θj− 1

2 ,k+ 1
2
ψ̄j,k+ 1

2
) + (Θj+ 1

2 ,k+ 1
2
ψj+1,k+ 1

2
)ψ̄j,k+ 1

2
, (41)

where Θj,k = Θ(ψj,k, xj , tk) = Ψ ′
2(|ψj,k|2, xj , tk).
|ψ |
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Next, we sum over j and take the imaginary part. It follows that (40) and (41) yield real functions,
respectively. Furthermore, Eq. (39) yields

�x
∑

j

|ψj,k+1|2 + �x	
∑

j

(ψj−1,k+1ψ̄j,k+1) = �x
∑

j

|ϕj |2 + �x	
∑

j

(ϕj−1ϕ̄j ),

�x
∑

j

|ψj−1,k+1|2 + �x	
∑

j

(ψj−1,k+1ψ̄j,k+1) = �x
∑

j

|ϕj−1|2 + �x	
∑

j

(ϕj−1ϕ̄j ). (42)

This implies

‖ψk‖2
1
2
= �x

∑
j

|ψj− 1
2 ,k|2 = �x

∑
j

|ϕj− 1
2
|2 = ‖ϕ‖2

1
2
, (43)

which is consistent with the first conservation law in Proposition 1, a global discrete conservation law
and a discrete ergodicity in spatial direction. This completes the proof. �
Remark 1.

1. In the quantum case (see Section 1.2), the theorem tell us that the quantum normalization is preserved
by the multi-symplectic scheme (36).

2. The scheme (33) does not satisfy ‖ψk‖2 = ‖ϕ‖2 (the global norm conservation at mesh points). This
means that the discrete global norm conservation of (33) is only in the sense of that corresponding
discretization.

3. By using similar method, one can show that the discrete global momentum is preserved by the multi-
symplectic integrator in the sense of the corresponding discretization.

The next result concerns Hamiltonian conservation and the global energy transit formula in the tem-
poral direction (especially relevant in the quantum physics context).

Theorem 3. If α(t) ≡ constant and V is independent of t , then the scheme (36) satisfies the discrete
global energy conservation law

�x
∑

j

(
α

∣∣∣∣ψj,k − ψj−1,k

�x

∣∣∣∣
2

− Vj− 1
2
|ψj− 1

2 ,k|2
)

= �x
∑

j

(
α

∣∣∣∣ϕj − ϕj−1

�x

∣∣∣∣
2

− Vj− 1
2
|ϕj− 1

2
|2

)
. (44)

Moreover, in this case, the discrete global energy of (36) is

�x
∑

j

(
α

∣∣∣∣ϕj − ϕj−1

�x

∣∣∣∣
2

− Vj− 1
2
|ϕj− 1

2
|2

)
.

Proof. We multiply (36) by (ψ̄j,k+1 − ψ̄j,k). The first term becomes

i

�t

(
ψj+1,k+1ψ̄j,k+1 − ψj+1,kψ̄j,k+1 − ψj+1,k+1ψ̄j,k + ψj+1,kψ̄j,k

+ 2|ψj,k+1 − ψj,k|2 + ψj−1,k+1ψ̄j,k+1 − ψj−1,kψ̄j,k+1 − ψj−1,k+1ψ̄j,k + ψj−1,kψ̄j,k

)
. (45)

The second term in (36) becomes
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2α

(�x)2

(
ψj+1,k+1ψ̄j,k+1 − 2|ψj,k+1|2 + ψj−1,k+1ψ̄j,k+1 − ψj+1,k+1ψ̄j,k + 2ψj,k+1ψ̄j,k

− ψj−1,k+1ψ̄j,k + ψj+1,kψ̄j,k+1 − 2ψj,kψ̄j,k+1 + ψj−1,kψ̄j,k+1

− ψj+1,kψ̄j,k + 2|ψj,k|2 − ψj−1,kψ̄j,k

)
. (46)

The third and fourth terms in (36) yield

1

2
Vj− 1

2

(|ψj,k+1|2 + ψj−1,k+1ψ̄j,k+1 + ψj,kψ̄j,k+1 + ψj−1,kψ̄j,k+1

− ψj,k+1ψ̄j,k − ψj−1,k+1ψ̄j,k − |ψj,k|2 − ψj−1,kψ̄j,k

)
+ 1

2
Vj+ 1

2

(|ψj,k+1|2 + ψj+1,k+1ψ̄j,k+1 + ψj+1,kψ̄j,k+1 + ψj,kψ̄j,k+1

− ψj+1,k+1ψ̄j,k − ψj,k+1ψ̄j,k − |ψj,k|2 − ψj+1,kψ̄j,k

)
. (47)

Now we sum (45), (46) and (47) over j , then take real parts. Eq. (45) vanishes. It follows from (46)
that

2α

�x2

(∑
j

(−2|ψj−1,k+1|2 + 2|ψj,k|2
) +

∑
j

ψj+1,k+1ψ̄j,k+1 +
∑

j

ψj−1,k+1ψ̄j,k+1

−
∑

j

ψj+1,kψ̄j,k −
∑

j

ψj−1,kψ̄j,k + 2
∑

j

(ψj,k+1ψ̄j,k − ψj,kψ̄j,k+1)

−
∑

j

ψj−1,k+1ψ̄j,k +
∑

j

ψj+1,kψ̄j,k+1 −
∑

j

ψj+1,k+1ψ̄j,k +
∑

j

ψj−1,kψ̄j,k+1

)

= 2α

�x2

(∑
j

(−2|ψj−1,k+1|2 + 2|ψj,k|2
) + 2

∑
j

	(ψj−1,k+1ψ̄j,k+1)

− 2
∑

j

	(ψj−1,kψ̄j,k) + 4i
∑

j


(ψj−1,kψ̄j−1,k+1) + 2i
∑

j


(ψj,kψ̄j−1,k+1 + ψj−1,kψ̄j,k+1)

)
,

thus its real part is

2α

(�x)2

∑
j

(−2|ψj,k+1|2 + 2	(ψj,k+1ψ̄j+1,k+1) + 2|ψj,k|2 − 2	(ψj,kψ̄j+1,k)
)

= 2α
∑

j

(∣∣∣∣ψj,k − ψj−1,k

�x

∣∣∣∣
2

−
∣∣∣∣ψj,k+1 − ψj−1,k+1

�x

∣∣∣∣
2)

. (48)

From (47), we get

1

2

(∑
j

Vj− 1
2

(|ψj,k+1|2 + ψj−1,k+1ψ̄j,k+1 − |ψj,k|2 − ψj−1,kψ̄j,k

)
+

∑
Vj− 1

2
2i
(ψj,kψ̄j,k+1) +

∑
Vj− 1

2
ψj−1,kψ̄j,k+1 −

∑
Vj− 1

2
ψj−1,k+1ψ̄j,k
j j j
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+
∑

j

Vj+ 1
2

(|ψj,k+1|2 + ψj+1,k+1ψ̄j,k+1 − |ψj,k|2 − ψj+1,kψ̄j,k

)

+
∑

j

Vj+ 1
2
2i
(ψj,kψ̄j,k+1) +

∑
j

Vj+ 1
2
ψj+1,kψ̄j,k+1 −

∑
j

Vj+ 1
2
ψj+1,k+1ψ̄j,k

)
,

hence its real part is

1

2

(∑
j

Vj− 1
2

(|ψj,k+1|2 + 	(ψj−1,k+1ψ̄j,k+1) − |ψj,k|2 − 	(ψj−1,kψ̄j,k)
)

+
∑

j

Vj+ 1
2

(|ψj,k+1|2 + 	(ψj+1,k+1ψ̄j,k+1) − |ψj,k|2 − 	(ψj+1,kψ̄j,k)
))

= 1

2

∑
j

Vj− 1
2

((|ψj,k+1|2 + |ψj−1,k+1|2 + 2	(ψj−1,k+1ψ̄j,k+1)
)

− (|ψj,k|2 + |ψj−1,k|2 + 2	(ψj−1,kψ̄j,k)
))

= 2
∑

j

Vj− 1
2

(|ψj− 1
2 ,k+1|2 − |ψj− 1

2 ,k|2
)
. (49)

Combining (48) and (49), we obtain

α
∑

j

(∣∣∣∣ψj,k − ψj−1,k

�x

∣∣∣∣
2

−
∣∣∣∣ψj,k+1 − ψj−1,k+1

�x

∣∣∣∣
2)

+
∑

j

Vj− 1
2

(|ψj− 1
2 ,k+1|2 − |ψj− 1

2 ,k|2
) = 0, (50)

hence (44), which completes the proof. �
The three results below have similar proofs (which we therefore omit).

Theorem 4. The scheme (33) satisfies the implicit discrete global conservation law

α(tk+ 1
2
)
∑

j

(∣∣∣∣ψj,k − ψj−1,k

�x

∣∣∣∣
2

−
∣∣∣∣ψj,k+1 − ψj−1,k+1

�x

∣∣∣∣
2)

+
∑

j

Θj− 1
2 ,k+ 1

2

(|ψj− 1
2 ,k+1|2 − |ψj− 1

2 ,k|2
) = 0, (51)

where Θ(ψ,x, t) = Ψ ′
|ψ |2(|ψ |2, x, t), and Θj,k = Θ(ψj,k, xj , tk).

Theorem 5. If α ≡ constant and Θ is independent of ψ and t , the scheme (33) admits

α
∑

j

∣∣∣∣ψj,k − ψj−1,k

�x

∣∣∣∣
2

−
∑

j

Θj− 1
2
|ψj− 1

2 ,k|2 = α
∑

j

∣∣∣∣ϕj − ϕj−1

�x

∣∣∣∣
2

−
∑

j

Θj− 1
2
|ϕj− 1

2
|2, (52)

where Θ(ψ,x) = Ψ ′
|ψ |2(|ψ |2, x), and Θj,k = Θ(ψj,k, xj ).
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Theorem 6. The numerical scheme (4) and the MG scheme have the following discrete global conserva-
tion laws

‖ψk‖2 = �x
∑

j

|ψj,k|2 = �x
∑

j

|ϕj |2 = ‖ϕ‖2. (53)

Theorem 4 tells us that the variation of global energy of (33) is not explicitly conservative in time
evolution, and the transit of global energy in temporal direction obeys (51). For example, let α ≡ 1, and
Ψ ′

|ψ |2(|ψ |2, x, t) = |ψ |2. Then the discrete global energy should be

E(tk) = �x
∑

j

(∣∣∣∣ψj+1,k − ψj,k

�x

∣∣∣∣
2

− 1

2

∣∣∣∣ψj+1,k + ψj,k

2

∣∣∣∣
4)

. (54)

Thus we have a discrete global energy formula.

Corollary 1. If α ≡ 1, and Ψ ′
|ψ |2(|ψ |2, x, t) = |ψ |2, then

ek = E(tk+1) − E(tk) = �x

4

∑
j

|ψj− 1
2 ,k+1 − ψj− 1

2 ,k|2
(|ψj− 1

2 ,k|2 − |ψj− 1
2 ,k+1|2

)
.

Furthermore,

E(tn) = E(t0) + �x

4

n∑
k=0

∑
j

|ψj− 1
2 ,k+1 − ψj− 1

2 ,k|2
(|ψj− 1

2 ,k|2 − |ψj− 1
2 ,k+1|2

)
.

Proof. It follows from (51) in Theorem 4 that

E(tk+1) − E(tk)

= �x
∑

j

(∣∣∣∣ψj+1,k+1 − ψj,k+1

�x

∣∣∣∣
2

− 1

2

∣∣∣∣ψj+1,k+1 + ψj,k+1

2

∣∣∣∣
4

−
∣∣∣∣ψj+1,k − ψj,k

�x

∣∣∣∣
2

+ 1

2

∣∣∣∣ψj+1,k + ψj,k

2

∣∣∣∣
4)

= �x
∑

j

(|ψj− 1
2 ,k+ 1

2
|2(|ψj− 1

2 ,k+1|2 − |ψj− 1
2 ,k|2

) − 1

2
|ψj− 1

2 ,k+1|4 + 1

2
|ψj− 1

2 ,k|4
)

= �x

2

∑
j

(|ψj− 1
2 ,k+1|2 − |ψj− 1

2 ,k|2
)((|ψj− 1

2 ,k+ 1
2
|2 − |ψj− 1

2 ,k+1|2
) + (|ψj− 1

2 ,k+ 1
2
|2 − |ψj− 1

2 ,k|2
))

= �x

4

∑
j

|ψj− 1
2 ,k+1 − ψj− 1

2 ,k|2
(|ψj− 1

2 ,k|2 − |ψj− 1
2 ,k+1|2

)
.

This completes the proof of the corollary. �
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4. Error estimation for the multi-symplectic scheme

In this section we make use of the numerical conservation laws obeyed by the proposed multi-
symplectic scheme to estimate the error. We denote by ψ̂ the exact solution of (1). Let us assume that

‖ψ̂k‖2
1
2
� 2E1(ϕ), (55)

and set

rj,k = ψ̂j,k − ψj,k.

The latter is the (pointwise) error of the numerical scheme. It follows from Theorem 2 that

‖rk‖2
1
2
� 8E1(ϕ). (56)

The truncation error of (33) is denoted by

Fj− 1
2 ,k+ 1

2
= i

�t

(
(ψ̂j+ 1

2 ,k+1 − ψ̂j+ 1
2 ,k) + (ψ̂j− 1

2 ,k+1 − ψ̂j− 1
2 ,k)

)
+

2α(tk+ 1
2
)

�x2
(ψ̂j+1,k+ 1

2
− 2ψ̂j,k+ 1

2
+ ψ̂j−1,k+ 1

2
)

+ Θ̂j− 1
2 ,k+ 1

2
ψ̂j− 1

2 ,k+ 1
2
+ Θ̂j+ 1

2 ,k+ 1
2
ψ̂j+ 1

2 ,k+ 1
2
, (57)

where

Θ̂j,k = Ψ ′
|ψ̂ |2

(|ψ̂j,k|2, xj , tk
)
.

Theorem 7. There exists a positive constant C1 depending on the initial condition ϕ only, such that for
�t : 0 < �t < 8

1+16C1
, the errors {rj,k} of the multi-symplectic scheme (33) satisfy

‖rk+1‖2
1
2
� 1

8 − �t(1 + 16C1)

((
8 + �t(1 + 16C1)

)‖r0‖2
1
2
+ 2�t

k∑
m=0

‖Fm+ 1
2
‖2

)

× exp

(
2k�t(1 + 16C1)

8 − �t(1 + 16C1)

)
. (58)

Proof. We substract (33) from (57) to obtain

i

�t

(
(rj+ 1

2 ,k+1 − rj+ 1
2 ,k) + (rj− 1

2 ,k+1 − rj− 1
2 ,k)

) +
2α(tk+ 1

2
)

�x2
(rj+1,k+ 1

2
− 2rj,k+ 1

2
+ rj−1,k+ 1

2
)

= Fj− 1
2 ,k+ 1

2
+ (Θj− 1

2 ,k+ 1
2
− Θ̂j− 1

2 ,k+ 1
2
)ψ̂j− 1

2 ,k+ 1
2
− Θj− 1

2 ,k+ 1
2
rj− 1

2 ,k+ 1
2

+ (Θj+ 1
2 ,k+ 1

2
− Θ̂j+ 1

2 ,k+ 1
2
)ψ̂j+ 1

2 ,k+ 1
2
− Θj+ 1

2 ,k+ 1
2
rj+ 1

2 ,k+ 1
2
, (59)

where Θj,k = Ψ ′
2(|ψj,k|2, xj , tk).
|ψ |
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Multiplying the above equation by r̄j,k+ 1
2
, summing over j and taking the imaginary part, one has

2

�t

∑
j

(|rj− 1
2 ,k+1|2 − |rj− 1

2 ,k|2
)

= 

∑

j

(Fj,k+ 1
2
r̄j+ 1

2 ,k+ 1
2
) + 2

∑
j

(Θj− 1
2 ,k+ 1

2
− Θ̂j− 1

2 ,k+ 1
2
)
(ψ̂j− 1

2 ,k+ 1
2
r̄j− 1

2 ,k+ 1
2
), (60)

where we use∑
j

(Fj− 1
2 ,k+ 1

2
r̄j,k+ 1

2
) =

∑
j

(Fj,k+ 1
2
r̄j+ 1

2 ,k+ 1
2
).

From our assumptions on Ψ , the boundedness of the exact solution ψ̂(x, t) and Theorem 2, it follows
that there exists a constant

C1 = (
max

∣∣ψ̂(x, t)
∣∣)(max |Ψ ′′

|ψ |2 |
)(‖ϕ‖2

1
2
+ max

∣∣ψ̂(x, t)
∣∣) > 0

such that

|Θj− 1
2 ,k+ 1

2
− Θ̂j− 1

2 ,k+ 1
2
| |ψ̂j− 1

2 ,k+ 1
2
| � C1|r̄j− 1

2 ,k+ 1
2
|.

We have
2

�t

∣∣‖rk+1‖2
1
2
− ‖rk‖2

1
2

∣∣ � 1

2
‖Fk+ 1

2
‖2

1
2
+ 1

2
‖rk+ 1

2
‖2

1
2

+ 2�x
∑

j

∣∣Θj− 1
2 ,k+ 1

2
− Θ̂j− 1

2 ,k+ 1
2
‖ψ̂j− 1

2 ,k+ 1
2
‖r̄j− 1

2 ,k+ 1
2

∣∣
� 1

2
‖Fk+ 1

2
‖2

1
2
+ 1 + 16C1

4

(‖rk+1‖2
1
2
+ ‖rk‖2

1
2

)
. (61)

This implies that

‖rk+1‖2
1
2
� ‖rk‖2

1
2
+ �t

4
‖Fk+ 1

2
‖2 + �t(1 + 16C1)

8

(‖rk+1‖2
1
2
+ ‖rk‖2

1
2

)
. (62)

Therefore,

‖rk+1‖2
1
2
� ‖r0‖2

1
2
+ �t

4

k∑
m=0

‖Fm+ 1
2
‖2

+ �t(1 + 16C1)

8

(‖rk+1‖2
1
2
+ ‖r0‖2

1
2

) + �t(1 + 16C1)

4

k∑
m=1

‖rk‖2
1
2
. (63)

By Gronwall’s lemma, if 0 < �t < 8
1+16C1

, we get

‖rk+1‖2
1
2
� 1

8 − �t(1 + 16C1)

((
8 + �t(1 + 16C1)

)‖r0‖2
1
2
+ 2�t

k∑
m=0

‖Fm+ 1
2
‖2

)

× exp

(
2k�t(1 + 16C1)

8 − �t(1 + 16C1)

)
. (64)

This completes the proof. �
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Remark 2. The inequality (58) implies the numerical error of the scheme (33) is bounded by the initial
error and by the truncation error, so the scheme (33) is convergent.

Remark 3. Under our assumption on Ψ and using the corresponding conservative properties in The-
orem 5, we also can derive a similar estimation to (58) for the scheme (4), thus the scheme is also
convergent.

5. Numerical experiments

On numerical experiments of Schrödinger equations, there have been many references (e.g., [1,2,
7–9,11–15,19,21,22,24,25,32,34–36,39–42,45] and references therein) with more details. The main pur-
pose of this section is to compare numerically the multi-symplectic scheme (33) with MG, MCN, by
making use of them in numerical simulations of periodic and quasi-periodic solitary-waves. Numerical
experiments in [21], with more details on energy, momentum and norm, show that the multi-symplectic
integrator preserves the norm and momentum within roundoff. Because the numerical simulation of
global momentum conservation is quite similar to that of global norm conservation, based on the work of
[21], we will, in the comparisons of this section, only focus our attention on the global norm conservation
and the error in the sense of infinite norm while two schemes are implemented. In the last part of this
section, we will simulate the global energy transit, which is the change of the discrete global energy as
time evolves, for a nonlinear Schrödinger equation by means of the multi-symplectic scheme (33).

We consider the following two problems:

iψt + αµ(t)ψxx + βµ(t)|ψ |2ψ = 0,

ψ(x,0) = ϕµ(x), µ = 1,2, (65)

where

α1(t) = 1

2
cos(t), β1(t) = cos(t)

sin(t) + 3
, ϕ1(x) = 1√

3
sech

(
x

3

)
exp

(
i(x2 − 1)

6

)
,

α2(t) = 1

2

(
cos(t) + √

2 cos(
√

2t)
)
, β2(t) = cos(t) + √

2 cos(
√

2t)

sin(t) + sin(
√

2t) + 5
,

ϕ2(x) = 1√
5

sech

(
x

5

)
exp

(
i(x2 − 1)

10

)
.

The problem corresponding to µ = 1 is a periodic one, while for µ = 2 it is quasi-periodic. The
equation is of interesting and important class of equations (see [43] and references therein). Based on the
results in [43], if µ = 1, then the problem has a periodic solitary-wave solution

ψp(x, t) = P1p(x, t)P2p(x, t)P3p(x, t), (66)

where

P1p(x, t) = 1

(sin(t) + 3)
1
2

,

P2p(x, t) = sech

(
x

)
,

sin(t) + 3
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P3p(x, t) = exp

(
i(x2 − 1)

2(sin(t) + 3)

)
.

If µ = 2, then the problem has a quasi-periodic solitary-wave solution

ψqp(x, t) = P1qp(x, t)P2qp(x, t)P3qp(x, t), (67)

where

P1qp(x, t) = 1

(sin(t) + sin(
√

2t) + 5)
1
2

,

P2qp(x, t) = sech

(
x

sin(t) + sin(
√

2t) + 5

)
,

P3qp(x, t) = exp

(
i(x2 − 1)

2(sin(t) + sin(
√

2t) + 5)

)
.

In both cases, the uniform grid in both time axis and space axis, with the step size �t and the step size
�x, respectively, are used.

5.1. Numerical comparisons

Now we take boundary conditions as

ψ(−40, t) = ψ(40, t) = 0 (68)

and use the mesh

xj = −40 + j�x, j = 1,2, . . . , n, n =
⌊

80

�x

⌋
,

tk = k�t, k = 1,2, . . . ,

for our numerical computations.
In each sub-interval, [tk, tk+1], by using the initial condition in (65) and boundary condition (68), we

write (33), (4) and the MG scheme as the form

A(k)T (k + 1) = B(k)T (k) + F
(
tk, tk+1, T (k), T (k + 1)

)
, k = 1,2, . . . ,

where A(k) and B(k) are invertible tridiagonal matrices depending on coefficients of the equation, the
vector T (k) = (ψ2,k,ψ3,k, . . . ,ψn−1,k)

T, and F is the nonlinear term in the nonlinear system determined
by the initial condition in (65), boundary condition (68) and coefficients in the equation.

To solve the above nonlinear system, we use the fixed point method. Fixed-point iterations are termi-
nated when both the ∞-norm difference between the T (k)s in two successive iterations and the ∞-norm
difference between left hand and right hand of the nonlinear system are less than 10−14 (the terminating
condition).

We denote by

esol = max
k

(esol)k (69)

the maximum error with the method under consideration, where ψ̂ and ψ are the exact solution and the
numerical solution, respectively, and

(esol)k = max
∣∣ψj,k − ψ̂(xj , tk)

∣∣.

j
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Table 1
Comparison of the MS scheme (33), the MCN scheme (12) and MG scheme for the periodic problem (63)
(µ = 1)

�t\�x �x = 0.2

mthd N It esol eunit

�t = 0.4 MS 439 50 3.5236 × 10−2 7.5495 × 10−15

MCN 440 50 4.5316 × 10−2 1.3636 × 10−13

MG 39 50 4.5314 × 10−2 1.5166 × 10−13

�t = 0.2 MS 361 50 1.1486 × 10−2 4.8850 × 10−15

MCN 361 50 2.5283 × 10−2 4.5075 × 10−14

MG 362 50 2.5283 × 10−2 2.0206 × 10−14

�t\�x �x = 0.4

�t = 0.4 MS 438 50 2.8661 × 10−2 8.6597 × 10−15

MCN 438 50 5.6458 × 10−2 1.5810 × 10−13

MG 439 50 5.6454 × 10−2 1.4522 × 10−13

�t = 0.2 MS 362 50 6.6728 × 10−2 4.6629 × 10−15

MCN 363 50 4.2482 × 10−2 1.7764 × 10−14

MG 362 50 4.2479 × 10−2 1.8208 × 10−14

�t\�x �x = 0.4

�t = 0.4 MS 877 100 2.8808 × 10−2 1.1546 × 10−14

MCN 876 100 5.6516 × 10−2 3.2041 × 10−13

MG 878 100 5.6511 × 10−2 2.8377 × 10−13

�t = 0.2 MS 1492 200 6.7160 × 10−2 7.1054 × 10−15

MCN 1492 200 4.2610 × 10−2 4.4853 × 10−14

MG 1490 200 4.2608 × 10−2 4.3299 × 10−14

The symbols are as follows: ‘mthd’ stands for method, ‘N ’ is the number of fixed point iterations, ‘It’ is the
total number of time steps, ‘esol’ is given by (69), while ‘eunit’ is the unitarity error given by (38) for MS and
(53) for MCN. See text for details.

The multi-symplectic scheme (33) (in short, MS), the modified Cranck–Nicolson scheme (12) (in
short, MCN) and the MG scheme, have been run on the same machine for the two problems µ = 1,2.1

The result of our computations is displayed in Tables 1 and 2.
In the last column of each table we display the error on the conservation laws (38) for MS and (53) for

MCN. The errors are computed as

eunit = max
k

∣∣‖ψk‖2
1
2
− ‖ψ̂k‖2

1
2

∣∣ (70)

for the MS scheme, and

eunit = max
k

∣∣‖ψk‖2 − ‖ψ̂k‖2
∣∣ (71)

for the MCN scheme and the MG scheme.
For the periodic problem, the numerical simulations reveal that all methods preserve well their discrete

conservation laws (38) and (53) which is possessed by MG scheme, the error being essentially determined
by the tolerance on fixed-point iterations. Furthermore, it is evident that the numerical behavior of the

1 Note that all methods are implicit and all obey discrete conservation laws.
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Table 2
Comparison of the MS scheme (33), the MCN scheme (12) and the MG scheme for the quasi-periodic problem
(63) (µ = 2)

�t\�x �x = 0.2

mthd N It esol eunit

�t = 0.4 MS 390 50 1.0027 × 10−1 9.3259 × 10−15

MCN 389 50 1.0674 × 10−1 7.7983 × 10−14

MG 389 50 1.0673 × 10−1 8.1046 × 10−14

�t = 0.2 MS 310 50 5.1756 × 10−2 9.7700 × 10−15

MCN 311 50 6.1279 × 10−2 4.2188 × 10−14

MG 311 50 6.1277 × 10−2 4.2633 × 10−14

�t\�x �x = 0.4

�t = 0.4 MS 389 50 8.9485 × 10−2 2.8866 × 10−15

MCN 389 50 1.1338 × 10−1 8.1046 × 10−14

MG 389 50 1.1337 × 10−1 8.3267 × 10−14

�t = 0.2 MS 311 50 3.9445 × 10−2 3.3307 × 10−15

MCN 311 50 7.2450 × 10−2 4.0412 × 10−14

MG 311 50 7.2447 × 10−2 4.1522 × 10−14

�t\�x �x = 0.4

�t = 0.4 MS 770 100 9.1156 × 10−2 4.2188 × 10−15

MCN 769 100 1.2034 × 10−1 1.2323 × 10−13

MG 769 100 1.20337 × 10−1 1.2412 × 10−13

�t = 0.2 MS 1315 200 5.2132 × 10−2 1.0214 × 10−14

MCN 1315 200 8.5937 × 10−2 1.1124 × 10−13

MG 1315 200 8.5926 × 10−2 1.1724 × 10−13

The symbols are as in Table 1.

MS scheme is, in general, better than MCN and MG. While �t = 0.2 and �x = 0.4, data tell us that the
average error, in some sense, of MS scheme seems less than MCN and MG. The appearance of this case
implies that the implementation of MS (also (4)) is partly depending on the ratio �t

�x
(of course, on the

terminating condition and so on) (see [20]).
For the quasi-periodic problem, all cases for �t and �x, the numerical behavior of the MS scheme is

better than MCN and MG, and the discrete conservation laws (38) and (53) are preserved to an accuracy
of between 10−15 and 10−13.

Numerical results in both two tables do not, in evidence, reveal the superiority of the multi-symplectic
scheme (33) over two others. Now we take the computational time interval [0,120], which is longer than
in the tables, and let �t = 0.4 and �x = 0.4. The boundary condition is taken as (68). The terminating
condition of fixed point iteration is the same as the above.

Figs. 1–3 show that the variation of (esol)k of MS, MCN and MG, respectively, in the periodic case.
Errors in all figures oscillate in the almost periodic state. Comparing with the corresponding cases in
Table 1 (in the time interval [0,40]), esol in the time interval [0,200] does not change in the sense of
roundoff. This accords with the result in Section 4.

Figs. 4–6 show that the variation of the error (eunit)k of MS, MCN and MG, respectively, in the periodic
case. The first interesting observation, looking at the error curves in the figures, is that the trends of
errors are increasing when t becomes larger. The second interesting observation is that in the sense of
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Fig. 1. The variation of (esol)k of MS, where �t = �x = 0.4, and esol = 0.02885269331356.

Fig. 2. The variation of (esol)k of MCN, where �t = �x = 0.4, and esol = 0.05653228435476.

Fig. 3. The variation of (esol)k of MG, �t = �x = 0.4, and esol = 0.05652822484364.
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Fig. 4. The variation of (eunit)k of MS, where �t = �x = 0.4, and eunit = 2.287059430727823e–014, (eunit)k =
|‖ψk‖2

1
2

− ‖ψ̂k‖2
1
2
|.

Fig. 5. The variation of (eunit)k of MCN, where �t = �x = 0.4, and eunit = 9.450218385609333e–013, (eunit)k =
|r‖ψk‖2 − ‖ψ̂k‖2|.

corresponding discretizations, the increasing rate of error of MS scheme is obviously less that others. In
fact, from Table 1 and figures, it is follows that the maximum error eunit of MS increases about 1.1324 ×
10−14 from t = 40 to t = 120, but the maximum errors of MCN and MG increase about 6.2459 × 10−13

and 4.8603 × 10−13, respectively, in the same time interval. These numerical phenomena seems to infer
that the multi-symplectic scheme (33) has a better numerical stability in discrete norm conservation.

Figs. 7–9 show that the variation of (esol)k of MS, MCN and MG, respectively, in the quasi-periodic
case. For all three numerical schemes, esol for the time interval [0,120] is not different from one for
[0,40] in Table 2.

Figs. 10–12 show that the variation of (eunit)k of MS, MCN and MG, respectively, in the quasi-periodic
case. Fig. 10 tells us that eunit does not change in the interval [0,95] in the sense of roundoff, at about
t = 96, it suddenly jumps to a little higher magnitude, and increases about 5.7732 × 10−15. For MCN
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Fig. 6. The variation of (eunit)k of MG, where �t = �x = 0.4, and eunit = 7.698286452750836e–013, (eunit)k =
|‖ψk‖2 − ‖ψ̂k‖2|.

Fig. 7. The variation of (esol)k of MS, where �t = �x = 0.4, and esol = 0.09115641996455.

Fig. 8. The variation of (esol)k of MCN, where �t = �x = 0.4, and esol = 0.12034447457798.
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Fig. 9. The variation of (esol)k of MG, where �t = �x = 0.4, and esol = 0.12033695254764.

Fig. 10. The variation of (eunit)k of MS, where �t = �x = 0.4, and eunit = 9.992007221626409e–015, (eunit)k =
|‖ψk‖2

1
2

− ‖ψ̂k‖2
1
2
|.

and MG, numerical results in Figs. 11, 12 and Table 2 show that the maximum errors eunit increase
3.4151 × 10−13 and 2.969 × 10−13, respectively.

A very interesting observation, looking at Tables 1, 2 and figures, is that the numerical efficiency and
behavior of the scheme MG are the same as the scheme MCN.

In Figs. 13 and 14, the periodically solitary wave and quasi-periodic solitary wave are pictured numer-
ically with �t = 0.4 and �x = 0.4.

5.2. Energy transit of the multi-symplectic scheme

Now we consider the energy transit of the multi-symplectic scheme. The problem (65) does not have
the property of global energy conservation because its nonlinear term is explicitly depending on the
time t . In order to monitor the discrete global energy transit of (33), we consider the problem

iψt + ψxx + |ψ |2ψ = 0, ψ(x,0) = ϕ(x), (72)
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Fig. 11. The variation of (eunit)k of MCN, where �t = �x = 0.4, and eunit = 4.647393581080905e–013, (eunit)k =
|‖ψk‖2 − ‖ψ̂k‖2|.

Fig. 12. The variation of (eunit)k of MG, where �t = �x = 0.4, and eunit = 4.209965709378594e–013, (eunit)k =
|‖ψk‖2 − ‖ψ̂k‖2|.

where

ϕ(x) =
√

2

2
exp

(
i
x

2

)
sech

(
x

2

)
.

By using (33) with α ≡ 1, and β ≡ 1, and a periodic boundary condition, the discrete global energy is

E(tk) = �x
∑

j

(∣∣∣∣ψj+1,k − ψj,k

�x

∣∣∣∣
2

− 1

2

∣∣∣∣ψj+1,k + ψj,k

2

∣∣∣∣
4)

, (73)

with t0 = 0. We take the periodic boundary condition

ψ(−20, t) = ψ(20, t) = 0,

and �t = 0.05, �x = 0.2, and simulate numerically E(k), for k = 1, . . . ,200, in terms of the method in
Section 5.1 with the terminating condition 10−12. The result of our computation is
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Fig. 13. The periodically solitary wave of (65) in the case µ = 1 with �t = 0.4 and �x = 0.4.

Fig. 14. The quasi-periodic solitary wave of (65) in the case µ = 2 with �t = 0.4 and �x = 0.4.

Emax = max
0�k�200

E(tk) = 3.345461352208954 × 10−1;
Emin = min

0�k�200
E(tk) = 3.345457472328555 × 10−1;

Eerror = max
0�k�200

∣∣E(tk) − E(t0)
∣∣ = 3.87988 × 10−7.

Fig. 15 exhibits the conservation of global energy, and shows the curve of global energy in the sense
of translation (here we picture E(tk) − 0.3345459). The curve viewed in Fig. 15 reveals that the discrete
global energy is lost in a small scale (≈10−5), with the time evolution under the multi-symplectic scheme
(33). Note that

esol = 3.8617 × 10−2.

In contrast of the accuracy of the scheme (33), the discrete global energy is preserved very well, while
the discrete norm is preserved with

eunit = 2.0006 × 10−13.

Finally, we take �t = 0.2 and �x = 0.2, and implement MS for 0 � k � 1000 and the same boundary
condition and terminating condition as the above. Fig. 16, in the sense of translation (E(tk) − 0.3345459
is pictured), provides the discrete global energy and the change of global energy transit in small scale
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Fig. 15. The curve of global energy transit is pictured in terms of E(tk) − 0.3345459.

Fig. 16. The curve of global energy transit with �t = 0.2 and �x = 0.2 and 0 � k � 1000.

Fig. 17. ek in Corollary 1 in Section 3 with �t = 0.2 and �x = 0.2 and 0 � k � 1000.



J. Hong et al. / Applied Numerical Mathematics 56 (2006) 814–843 841
(≈10−5). Fig. 17 is for ek in Corollary 1 in Section 3. In this case, esol has been crazy (≈1.8493)!
However, the discrete global energy still has very nice numerical behavior, the result of our computation
is

eunit = 9.319656 × 10−12;
Emax = max

0�k�1000
E(tk) = 3.345461352208994 × 10−1;

Emin = min
0�k�1000

E(tk) = 3.3440907112219 × 10−1;
Eerror = max

0�k�1000

∣∣E(tk) − E(t0)
∣∣ = 1.370645 × 10−4;

max
0�k�1000

ek = 1.8493 × 10−5.

6. Conclusion

In conclusion, for Schrödinger equations with varying coefficients, the multi-symplectic scheme con-
sidered in this paper is proved to preserve exactly the norm conservation and to be stable and convergent
with respect to the initial values. In comparison with a nice conservative scheme (MCN) and another
multi-symplectic scheme (MG), the multi-symplectic scheme (MS) is slightly (somewhat) ascendant in
the preservation of discrete norm conservation, thus in the corresponding stability (in the sense of norm
conservation law) in long time computation. Although MS does not preserve theoretically the global en-
ergy, the numerical accuracy of global energy, in numerical simulation of the last part 5.2 of paper for the
case of constant coefficients, can arrive at a higher order in contrast of the accuracy of numerical solutions
of the multi-symplectic scheme (MS). Our numerical results match theoretical ones in this paper.
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